skip to main content


Search for: All records

Creators/Authors contains: "Govyadinov, Pavel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Microvessels are frequent targets for research into tissue development and disease progression. These complex and subtle differences between networks are currently difficult to visualize, making sample comparisons subjective and difficult to quantify. These challenges are due to the structure of microvascular networks, which are sparse but space-filling. This results in a complex and interconnected mesh that is difficult to represent and impractical to interpret using conventional visualization techniques. We develop a bi-modal visualization framework, leveraging graph-based and geometry-based techniques to achieve interactive visualization of microvascular networks. This framework allows researchers to objectively interpret the complex and subtle variations that arise when comparing microvascular networks. 
    more » « less
  2. In vivo , microvasculature provides oxygen, nutrients, and soluble factors necessary for cell survival and function. The highly tortuous, densely-packed, and interconnected three-dimensional (3D) architecture of microvasculature ensures that cells receive these crucial components. The ability to duplicate microvascular architecture in tissue-engineered models could provide a means to generate large-volume constructs as well as advanced microphysiological systems. Similarly, the ability to induce realistic flow in engineered microvasculature is crucial to recapitulating in vivo -like flow and transport. Advanced biofabrication techniques are capable of generating 3D, biomimetic microfluidic networks in hydrogels, however, these models can exhibit systemic aberrations in flow due to incorrect boundary conditions. To overcome this problem, we developed an automated method for generating synthetic augmented channels that induce the desired flow properties within three-dimensional microfluidic networks. These augmented inlets and outlets enforce the appropriate boundary conditions for achieving specified flow properties and create a three-dimensional output useful for image-guided fabrication techniques to create biomimetic microvascular networks. 
    more » « less